New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales.
نویسندگان
چکیده
The accumulation of intracellular organic solutes was examined in six species of the order Thermotogales by nuclear magnetic resonance spectroscopy. The newly discovered compounds di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate and di-myo-inositol-1,3'-phosphate were identified in Thermotoga maritima and Thermotoga neapolitana. In the latter species, at the optimum temperature and salinity the organic solute pool was composed of di-myo-inositol-1,1'(3,3')-phosphate, beta-glutamate, and alpha-glutamate in addition to di-myo-inositol-1,3'-phosphate and di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate. The concentrations of the last two solutes increased dramatically at supraoptimal growth temperatures, whereas beta-glutamate increased mainly in response to a salinity stress. Nevertheless, di-myo-inositol-1,1'(3,3')-phosphate was the major compatible solute at salinities above the optimum for growth. The amino acids alpha-glutamate and proline were identified under optimum growth conditions in Thermosipho africanus, and beta-mannosylglycerate, trehalose, and glycine betaine were detected in Petrotoga miotherma. Organic solutes were not detected, under optimum growth conditions, in Thermotoga thermarum and Fervidobacterium islandicum, which have a low salt requirement or none.
منابع مشابه
Compatible solutes of organisms that live in hot saline environments.
The accumulation of organic solutes is a prerequisite for osmotic adjustment of all microorganisms. Thermophilic and hyperthermophilic organisms generally accumulate very unusual compatible solutes namely, di-myo-inositol-phosphate, di-mannosyl-di-myo-inositol-phosphate, di-glycerol-phosphate, mannosylglycerate and mannosylglyceramide, which have not been identified in bacteria or archaea that ...
متن کاملOrganic solutes in hyperthermophilic archaea.
We examined the accumulation of organic solutes under optimum growth conditions in 12 species of thermophilic and hyperthermophilic Archaea belonging to the Crenarchaeota and Euryarchaeota. Pyrobaculum aerophilum, Thermoproteus tenax, Thermoplasma acidophilum, and members of the order Sulfolobales accumulated trehalose. Pyrococcus furiosus accumulated di-myo-inositol-1,1(prm1)(3,3(prm1))-phosph...
متن کاملEffects of temperature, salinity, and medium composition on compatible solute accumulation by thermococcus spp
The effects of salinity and growth temperature on the accumulation of intracellular organic solutes were examined by nuclear magnetic resonance spectroscopy (NMR) in Thermococcus litoralis, Thermococcus celer, Thermococcus stetteri, and Thermococcus zilligii (strain AN1). In addition, the effects of growth stage and composition of the medium were studied in T. litoralis. A novel compound identi...
متن کاملAccumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature.
(sup13)C and (sup1)H nuclear magnetic resonance spectroscopy was used to identify and quantify organic solutes accumulated by the hyperthermophilic archaeon Pyrococcus furiosus in response to temperature and salinity. Di-myo-inositol-phosphate and 2-O-(beta)-mannosylglycerate were the major organic solutes accumulated in these cells. The total intracellular organic solutes increased significant...
متن کاملBiosynthetic pathways of inositol and glycerol phosphodiesters used by the hyperthermophile Archaeoglobus fulgidus in stress adaptation.
Archaeoglobus fulgidus accumulates di-myo-inositol phosphate (DIP) and diglycerol phosphate (DGP) in response to heat and osmotic stresses, respectively, and the level of glycero-phospho-myo-inositol (GPI) increases primarily when the two stresses are combined. In this work, the pathways for the biosynthesis of these three compatible solutes were established based on the detection of the releva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 178 19 شماره
صفحات -
تاریخ انتشار 1996